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We consider the one-parameter family of mappings fa(x)= 4 a x ( l -  x), a,x 
E [0, l] and define an infinite countable set of parameter values ~ for which the 
solutions show observable chaos. Their properties are investigated by means of 
correlation functions and spectra, which can be interpreted and approximated 
by separating periodic and chaotic components in the solutions and introducing 
two simple assumptions on the statistics of the chaotic component. 
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1. INTRODUCTION 

In recent years there has been considerable progress in the understanding 
of the dynamic properties of discrete nonlinear one-dimensional dynamic 
systems C t-8) 

x~+~(a)=f~(xT(a)), a ~ J ,  x ~ I ,  ~- = 0, 1,2 . . . .  

with f~ : I <--~, I,J: intervals of the real axis (1) 

Concerning applications (9-2~ to experimentally realizable systems the sta- 
ble stationary dynamics generated by f~ is of particular interest. The 
stationary dynamics is characterized by the asymptotic behavior of typical 
solutions (x~(a)} ~=o of (1) which is either periodic or chaotic. A solution is 
typical if the set of initial points x 0 giving rise to solutions with the same 
asymptotic behavior is not countable. By the stability of the dynamics we 
mean that the solutions considered do not change their type of behavior 
under infinitesimal perturbations. This requirement is essential for the 
comparability with experimental results, which are usually obtained in the 
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presence of some background noise. In the case of periodic solutions the 
problem of stability is easily resolved by a linear stability analysis, see, e.g., 
Ref. 20. In the chaotic case, however, one is led to the important question 
of observability. (21) Many numerical investigations corroborate that the 
Li-Yorke criterion (22) only states the formal existence of chaos but not its 
observability. Oono and Takahashi (21) investigated this point and proposed 
a criterion for the observability of chaos. 

In this paper we consider as an example for (1) the logistic parabola 

f~ (x )=4ax(1-x ) ,  a,x  ~ [ 0 , 1 ]  (2) 

which has the advantage of combining the capacity of a multitude of 
generic features with a comparatively simple mathematical form. 

After reviewing some results needed later (Section 2), we describe how 
one can obtain for each stable periodic solution a corresponding state of 
periodic chaos (Section 3). This procedure can also be applied to dynamical 
laws other than (2). In Sections 4 and 5 we discuss the correlation functions 
and spectra in these states. While the correlations are very well suited to 
recognize chaotic states as closely related, e.g., a cycle and its subharmonic, 
the spectra render a clear-cut discrimination even between those closely 
related states. An approximation method for the spectra relying on a 
decomposition of the dynamics into a periodic and a pseudostochastic 
component is proposed in Section 6. 

2. STABLE DYNAMICS 

For a ~ [0,a}l)), ac (1) = 0 .892486417. . .  the typical solutions of (2) 
show asymptotically periodic behavior with period p = 2 "(a), n(a)= O, 1, 
2 . . . . .  The solutions converge to limit sets A(a )=  {2j(a)}~=0: with 2j+1 
= f~(~j) fo r j  = 0 , 1 , 2  . . . . .  p - 2 and ~0 = f~(~e_l); ~0(a) > 2j(a),j = 1,2, 
3 . . . . .  p - 1 .  

For a ~ (a{ 1), 1] Hoppensteadt and Hyman (23) demonstrated the exis- 
tence of formal chaos by applying the Li-Yorke criterion to iterated maps 
f~") =f~ o f~"--l), f~~ a~ 1) thus plays the role of a critical point 
separating an "ordered phase" (a < a} :)), where periodic solutions with 
periods p = 2 "(a) prevail, from a "disordered" one (a > a{ ~)) characterized 
by formal chaos. (24'25) The analogy to a continuous (second-order) phase 
transition can even be carried further. The bifurcation points a~ z) < a} ~), 
n = 1,2, 3 , . . .  where the period of stable solutions jumps from p = 2"- 1 to 
p = 2 n obey asymptotically an exponential law (z6'2) 

a~,)ne a{,)_ a(~)8-n (3) 
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Feigenbaum (2'3) (who considered the points of maximum cycle stability) 
obtained by high precision computations ~ = 4.669201 609 102 . . . .  The 
empirical observation of exponential convergence was put on a sound 
mathematical basis by proofs of Collet et al. ~4) and Lanford III. (27) 

For  a --- a~ l) the limit set A(a~ l)) is a Cantor set. (28'29'4) According to 
Ref. 13 it can be described as the limit obtained by iterated fragmentation 
into subintervals with scaling factors - 1 / a  and 1 / a  2 where a = 
2.502907 875 . . . .  ~2,3) In our own numerical computations (accuracy: ten 
decimal places) we have found a to vary within [2.356, 2.577]. 

In the interval (a{1), 1] further stable periodic solutions (cycles) occur 
showing a behavior analogous to that observed in [0,a{0): At some value 
a~o m) a primary cycle of period m comes into existence by "tangent-type" 
bifurcation ~2~ (called "saddle node" in Ref. 30). If a is increased, the 
primary cycle finally loses stability and subharmonics of period p = rn �9 2", 
n = 1,2, 3 . . . .  consecutively become stable at parameter values ai m) , They 
are generated by "slope-type" bifurcation ~2~ (called "flip" in Ref. 30). 
Again the series {ai m) ),~--0, m = 3,4, 5 , . . .  converge to critical values ai m) 
asymptotically obeying exponential laws 

a(m) ~ a(m)_ a(m)6 -n (4) 
n- . )  oo 

with the same 8 as in (3). For m/> 5 there is more than one primary cycle 
for each m. These cycles differ in the ordering of periodic points. ~30 An 
explicit formula for the multiplicity of cycles as function of m is given in 
Ref. 32. To keep track of different cycles with the same period we introduce 
a new index r/> 1. Thereby we adopt the convention r I < r 2 if a(o m'r') 

a (re,r2).  

Defining j(m,r)= [a(m,r),a(m,r)) we have J~ ..... )fq j r  ..... 2) = 0 if (ml, rl) 
4 = (m2, r2) as a consequence of a theorem of Fatou ~33) and Julia ~34) stating 
that two different cycles cannot be stable simultaneously. 

The theorem of Sarkovskii r gives an order relation between differ- 
ent J ~"') which corresponds to the order relation of Metropolis, Stein, and 
Stein ~sl) (MSS), later amended by Collet and Eckmann. ~5'8) They devel- 
oped the following procedure to characterize the structure of stable cycles: 

For  each stable cycle there is a value of a for which it is superstable, 
i.e., the point x* = 1/2 with f~(x = x*) = 0 is element of the limit set A(a). 
With ~p_~(a)= x* the cycle structure is characterized by describing the 
position of each 2j(a) relative to ~p_l(a) for j = 0, 1,2 . . . . .  p -  2 by 
symbols R and L, where R denotes the case 2j(a)> x* and L the case 
~j(a) < x*. Thus each cycle is labeled by a sequence of Rs and Ls. 
Although the periodic points ~j(a) shift as functions of a, the ordering 
described by these MSS sequences stays the same as long as the cycle in 
question exists. 
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In te rpre t ing  R and  L as b ranches  of the inverse m a p  f } -  1) 

Ra(x)  = [ 1 + (1 - x/a)I /2]/2  r ight  b ranch  

Lo(x) = [ 1 -  ( 1 -  left branch 

these sequences l ead  to a s t ra ight forward  numer ica l  p rocedure  to de te rmine  
the pa rame te r  values ~m,r) of m a x i m u m  cycle stabil i ty.  Let  62 denote  a 
given MSS sequence RL . . . .  Then  the cor respond ing  d}m,~) is a solut ion of 
t~ = P~(1 /2 )  where P~ denotes  the funct ion R~ o L~ o �9 �9 �9 

Ano the r  useful  means  for the descr ip t ion  of cycle s tructures is the 
fol lowing compos i t ion  law(37) : 

If 62 and  ~ = o0alo 2 �9 �9 . %, oj = R,L are  two MSS sequences,  62,~ is 
the sequence 62~'062"rj �9 �9 �9 62~'q_t62"rq62 with ~. = R,L and  

= oj if 62 has  an  even number  of R charac ters  

"rj =/= oj otherwise 

Thus,  for example ,  the b i furca t ion  of a cycle 62 into a series of sub- 
ha rmonics  is descr ibed  by  62 ,R* ' ,  n = 1,2,3 . . . .  (Note :  R 3 = RRR, bu t  
R . 3 =  R,R ,R) .  

3. STATES OF PERIODIC  C H A O S  
(re,r) Star t ing f rom a cycle of pe r iod  p,  which becomes  stable at  a = _, , 

one can f ind a pa r ame te r  value  where  chaos  is observable  by  p roceed ing  as 
follows: 

(i) One adjusts  a to the value  ~ " " )  where the cycle in quest ion is 
supers table  (Fig. la) .  

ft fk31 fti~ ' 

i 

a b e 

Fig. 1. Construction of states of periodic chaos. (a) Superstable cycle of fa; (b) periodic 
points show up as stable fixed points in thep-fold iterated map at the same parameter value fi; 
(c) fl-like situation in each box after a slight increase of the parameter to a value tT. 
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(ii) Each periodic point :~j(a) shows up as a stable fixed point of the 
iterated mapf~ (p) (Fig. lb). In the neighborhood of each of them there is an 
unstable fixed point Ycj(a) coinciding with the stable one for a = a~ (''r). 
Using these neighboring fixed points as corner points one can construct 
squares around all stable fixed points in the manner indicated in Fig. lb. 
These squares define intervals/j(P) (a) which are mapped into themselves by 
f ( P ) .  

(iii) Increasing a one finally arrives at a = 8(~ re'r), where f~(P) maps all 
IJP)(a) onto themselves, i.e., on each square the local extremum of f~(P) 
touches the lower or upper edge (Fig. lc). 

Figure 2 shows some examples obtained this way. Some values for 
8 (re'r) a r e  given in Table I. 

In the following we discuss the dynamic properties of such states by 
means of correlation functions and spectra. A thorough account on other 
aspects of these states is given in Ref. 6 and their invariant densities are 
discussed in Refs. 38-42. Within each of the squares, i.e., on intervals 

d M 
X 

g 

h 

Fig. 2. States of periodic chaos. The diagrams show the respective iterated mapsf~P) on the 
unit square with chaotic boxes. (a)-(d) Subharmonics of p = 1; in going from a cycle to its 
subharmonic each box is replaced by a pair of linked boxes; (e)-(h) primary cycles, boxes are 
far apart from each other; (f)-(h) show different period-5 chaotic states. 
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Table I. 

MSS 

Parameter Values for Some States of Periodic Chaos 

m r n ~(m,r) 

1 1 0 1.000 0 0 0  000 
R 1 0 . 9 1 9  6 4 3  3 7 7  �9 �9 - 

R . 2  2 0 . 8 9 8  I 4 3  0 4 6  �9 �9 - 

R . 3  3 0 . 8 9 3  7 0 1  2 3 4  �9 �9 �9 

R . 4  4 0 . 8 9 2  7 4 6  4 8 5  �9 " �9 

R * ~  ~ 0 . 8 9 2  4 8 6  4 1 7  " �9 - 

R L  3 1 0 0 . 9 6 4  2 0 0  1 6 3  �9 �9 �9 

RL*  R 1 0 . 9 6 2  7 8 2  0 9 3  �9 - �9 

RL* R * 2  2 0 . 9 6 2  4 4 6  111  �9 �9 �9 

RL*  R* o~ o~ 0 . 9 6 2  3 5 8  4 2 0  - �9 �9 

R L L  4 1 0 

R L L ~ R  1 
0 . 9 9 0  3 9 8  8 8 0  � 9  �9 

0 . 9 9 0  3 2 2  9 9 8  �9 

R L R R  5 1 0 0 . 9 3 6  1 7 7  5 8 3  - 

R L R R * R  1 0 . 9 3 5  8 5 3  5 8 3  - 

R L L R  5 2 0 0 . 9 7 6  6 9 3  0 3 8  

R L L R *  R 1 0 . 9 7 6  6 3 2  3 0 1  

R L L L  5 3 0 

R L L L  * R 1 

0 . 9 9 7  5 8 6  1 7 8  - - 

0 . 9 9 7  5 8 1  7 4 3  - �9 �9 
ii i 

/}(P)(a'), j = 0, 1,2 . . . . .  p - 1, the map fJP) generates a dynamics analo- 
gous to that of fl  on the unit interval. Therefore observable chaos is 
expected in each of these boxes. As Misiurewicz (42) could show, these states 
indeed have invariant ergodic measures ~(P)(dx) absolutely continuous 
with respect to the Lebesgue measure. Numerical studies (38"39) indicate their 
observability.(21'43) 

An example of a solution of fa for a = ~7, (m'') is given in Fig. 3b. The 
qualitative behavior is easily understood as the superposition of the chaotic 
solutions within the squares and the periodic mapping of the squares onto 
each other (Fig. 3a). Therefore we called these states "periodically chaotic" 
in Ref. 26. Other authors use the term "semiperiodic ''(44) or characterize 
these states by the occurrence of "invariant segments". (7) 

Obviously there is exactly one ~7~ ('~'r) for each a(Z ''), i.e., to each stable 
cycle there is exactly one state of periodic chaos. Therefore we also use the 
RL pattern of the underlying cycle to label the corresponding chaotic state. 
Because of this one-to-one relation between stable cycles and states of 
periodic chaos the set {~7, (' ' ')} is infinite but countable. General consider- 
ations, however, indicate that the set of parameter values leading to 
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1' 

f~l 

ft 

,,i=[I T r . . . .  

I I 

I = 0 /  

I 

X~ 

IO p . . . . . .  * I~ l  4 e ~ l  I~ee  tPD ~lOBm a~ i o ~ 1 7 6  OOme~mORmlm P~ o 

�9 �9 , , � 9  � 9 1 7 6 1 4 9  , ..... . �9 � 9 1 4 9 1 4 9 1 4 9  � 9  �9 , , � 9  

�9 � 9 1 4 9  o � 9 1 4 9 1 7 6 1 4 9  , , � 9 1 4 9  ,'~149 � 9 1 7 6 1 7 6 1 4 9 1 4 9  

. . ' " ' � 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 4 9 1 7 6  

X 

a b 
"t 

Fig. 3. Superposition of periodic and pseudostochastic components for a = ~ 6 3 , 1 ) .  (a) Within 
each box j = 0, 1, 2 on the diagonal f~3) generates a chaotic solution; fa maps the chaotic 
boxes onto each other in a cyclic fashion; only those parts offa contained in the off-diagonal 
boxes j = 0, 1, 2 become effective; (b) solution of f,~; the chaotic behavior within each box is 
obvious. 

observable chaos has positive Lebesgue measure. (8) Up to now no proof of 
this is available�9 

The order relation between different cycles (31'5) can likewise be used to 
give an ordering of different states of periodic chaos. To this end we 
consider first the case a = ~0 (1'1) = 1. Let a(6)) denote the value of the 
parameter  where the cycle ~ is superstable. Then 

~0 (]'l) = lira a ( R L  ~) (5) 

To prove the validity of this equation we interpret R and L as inverse 
operators of fa as in Section 2. Since L has only one globally stable fixed 
point at zero, L ( v ) ( 1 / 2 ) o 0  for 7---) 00 and R(0) = 1. 

In the more general case of a periodic chaos with an underlying cycle 
6~ (re'r) = P(om").R *" the corresponding value ~(n m'') is given by 

a(n m'r) = lim a(~p(nm")*RL r) for each (m,r) ,n  (6) 

This relation is easily understood by taking into account that in ~ , ~  the 
first sequence P describes the overall structure of the cycle, whereas 
describes its fine structure. (37) The limit 7 ~ o v  in , R L  v thus makes the 
local extrema of f i  e) approach the edges of the respective squares while 
P~'~") takes care of the coarse cycle structure. A proof of (6) can again be 
given by interpreting R and L as inverse maps. Thus by using the order 
relation between MSS sequences (31'5) one arrives at an ordering for the 
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a(n m'r). Another  conclusion drawn f rom the order  relation between MSS 
sequences is 

lim a~ re'r) --- lim ~(m,r) for each (m, r) (7) 
n - - ) ~  n---) ~ 

Both limits are equal  because  the sequences  l imn__,~om'r),R *~ and  
lim,_~o~ limv_~o~ ~o'~'~)*R*n*RL ~ agree for an infinite n u m b e r  of consecutive 
symbols  f rom the start. A full-fledged general  proof  is given by  Collet  et 
al. (4) The  ~(re,r) a n , n = 0, 1,2 . . . .  again obey an asymptot ic  exponent ia l  
law (26,39,4) 

~,,,,~) ~ a~m,r) + 6~m,r) 8 -n for each (m, r) (8) 
n - - ) ~  

where 8 is again the same as in (3). 

. CORRELATIONS IN STATES OF PERIODIC CHAOS 

A more  detailed description of periodic chaos is ob ta ined  by use of 
correlat ion functions (c.f.) defined as 

c~(a) = ( ~ x ( ~ ) ~ x ~ ( a ) )  

with the f luctuation 

8x (a) = x , ( a ) -  

 x(a) = 

The average ( �9 �9 �9 ) m a y  be calculated either as 

ensemble  average ( �9 �9 �9 ( x ) )  = ( 1  . . . 
J0 

(x) dr, (x) 

or as 

(9) 

(1o) 

T - l  

t ime average ( �9 �9 �9 (xt ) )  = lim 1 Y X . . . ( x , )  
t = 0  

since ergodicity is given (Section 3). 
For  a = ~o O'l) = 1 the c.f. can be calculated analytically, (26'39) 

0.125 i f r = 0  (11) 
c,(1) = 0 if r v~0 

Numer ica l  results for other values of a are shown in Fig. 4. In  all cases the 
c.f.'s rapidly converge with increasing z to a periodic oscillation. Decom-  
p o s i n g  the  c o m p l e t e  so lu t i on  ( x ~ ( d ( P ) ) ) ~ =  0 in to  p s u b s o l u t i o n s  
(x(J)(a(P)))~=o, j = 0, 1,2 . . . . .  p - 1, where the j t h  subsolut ion is com- 
pletely contained in t h e j t h  chaotic  box, this asympto t ic  oscillation is easily 
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oIIÂ AAÂ AAA,I IVvvVVvVVVVl 
0 10 I ;  20 

d 

Fig. 4. Correlation functions for several states of periodic chaos (time average with T =  
50,000); aside from a slight change in amplitude c differs from b also in an additional periodic 
oscillation of the amplitudes, which, however, is so small that it cannot  be discerned in c. 

explained as the c.f. of the mean values of subsolutions. Thus, a different 
structure of the underlying cycle in general shows up clearly in the 
asymptotic behavior of the c.f.'s. Compare for example Figs. 4b, 4c with 
Figs. 4e,4f, both showing c.f.'s in states of chaos with p = 4 and # = 8, 
respectively. On the other hand the close structural similarity between a 
cycle and its subharmonics leads to similarly looking c.f.'s (Figs. 4a-4c). 

The investigation of the dynamic behavior in a single box generated by 
the iterated map f~P) reveals another interesting feature. Therefore we 
consider the subsolutions ~x (j)t.~(p)~x~ To facilitate a comparison with k r k ~ / J r = O "  
the c.f. for a = 1 we normalize all of these solutions to the unit interval by 

= (x<J> - ( 1 2 )  

where/j  is the length of/j(P)(a") multiplied by + 1( -1)  if f~e) has a local 
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0 ~  

' j=2 

j : 3  

0 1'0 ' 

Deviation 2x~'~J) of correlation functions in normalized boxes from "normal"  behavior 
(time average with T = 50,000); one ordinate unit = 0.01. 

maximum (minimum) in / j ( : ) (~ .  The box c.f.'s 

~J)( g) = (85(J)(3)&~J)(g) ) (13) 

are similar to the "normal" c.f. (11). Since we are interested in the 
deviations from (11), we consider the difference A~J)(a')= ~ J ) ( a ' ) -  c~(1), 
see Fig. 5. 

The numerical results may be summarized by the following rule: If the 
underlying cycle is primary in the sense of Section 2, the box c.f.'s decay 
almost as fast as c~(1). If the underlying cycle is a subharmonic, the decay 
is appreciably slower. In all cases the decay is monotonous. 

We pointed out in Ref. 26 that the immediate decay as observed in 
(11) is brought about by an intricate balance in the shape of the dynamical 
law. The dynamic law fa considered here as well as all iterated maps f~P) 
are polynomials. Since the first derivative f" has only one zero at x* = 1/2, 
it is clear from the construction of the 8~ re'r) that in the case of period-p 
chaos the first derivative of fJP) has precisely one zero zy of first order in 
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each chaotic box j .  Denoting the other zeros of f~P)(x), which is a 
polynomial of ( 2 p -  1)th degree, by zp, zp+ 1 . . . . .  z2p_ 2, fa~P;(X) can be 
represented by I'[~_202(x - zk). The deviation Offa~P~ from a parabolic shape 
in the box j can be measured by the ratio 

5 = min[z - zkl/I/jl, k = o, 1,2, 2p - 2 (14) 
k ~ j  J " " " ' 

This is because 9 >> 1 m e a n s  f~P) ' (x)  is almost linear in b o x j  and therefore 
f~P) ( x )  is almost parabolic: 

2P-  2 

f~e ) ' ( x )  = 1-I ( x  - zk) ~ ( x  - zj) for x E/j(e),  5 >> 1 
k = 0  

f2P~(x)  ~ � 8 9  2 - z jx  + const for x ~/j(P~, • >> 1 

Table II contains the values of w for the box c.f.'s shown in Fig. 5. i)>> 1 
clearly implies a close to normal behavior of the respective box c.f. whereas 
the converse is not true. 

Thus the observed slower decay of box c.f.'s in the case of subhar- 
monic underlying cycles is a probable but not necessary consequence of the 
pairing of boxes occurring in this case (Figs. 2a-2d). On the other hand, 
boxes are always isolated if the underlying cycle is a primary one (Figs. 
2e-2h), which accounts for the close similarity of the box c.f.'s to c,(1). 

Table Ih Shape Parameter rj 
for Subharmonics and 

Primary Cycles 

Cycle j 5 

R 0 1.76 
l 0.74 

R .2 0 1.78 
1 1.67 
2 0.69 
3 0.75 

R L  0 9.61 
1 2.72 
2 1.59 

R L L  0 4 4 . 9  

1 11.6 
2 6.73 
3 3.37 
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5. SPECTRA OF PERIODIC CHAOS 

In this section we consider the power  spectra of periodically chaotic  
solutions using the discrete Fourier  t ransformat ion.  To  avoid ambiguit ies in 
this formal ism we introduce the concept  of the "N- t runca t ed"  solution as 
follows: 

If  { x ~ ) ~  0 is a solution of (1), then {X~,N)~ 0 with x~, N = x~ for 
r = 0, 1,2 . . . . .  N - 1 and  X . r + N ,  N = X.r,g, 7" = 0, 1,2, �9 �9 �9 is referred to as 
"N- t runca t ed"  solution. 2 

Its c.f. 

= (  XoJX ,  ) (15) 
can be obta ined  f rom the c.f. c~ of the original solution by  

C ~ , N = ( 1 - - ' r / N ) c ~ + ( ' c / N ) C N _  , , ~- = 0, 1,2 . . . . .  N (16) 

For  ~ << N we have c~, N -~ c~. If c~ decays in a characterist ic t ime % and 
N >> %, c~, N m a y  be looked upon  as a good approx imat ion  to c~, and  N 
truncat ion can be regarded as mere  technicality. 

We  define the Fourier  t rans form of the f luctuat ions of an " N -  
t runcated"  solution ( x~, N ) ~= o as 

N - I  
1 X ~ , N = -  ~ ~ exp(- iZTrv'r /U)6x~,  N, v = 0 , 1 , Z , . . . , U - i  (17) 

T=0 

The inverse t ransformat ion  is 

N - I  

8x~, N = ~ exp(i2~r'rv/N)X, ,u,  "r = O, 1,2 . . . . .  N - 1 (18) 
v=0  

Since the f luctuations (~x~, u are real, the Fourier  t ransform has the proper ty  

XN-, ,N = -~,,U (19) 

where the overbar  denotes the complex conjugate.  In t roducing  (18) into 
(15) we obtain 

C,r, N = ( ~Xt,N~Xt +,r,N ) 

N - I N - I  
C~,N= ~ ~ e x p ( i 2 ~ r [ t ( l ~ + v ) + ~ v ] / N } ( X ~ , N X ~ , u }  

i t=0  v=0  

Since the f luctuations 6xt, N are stationary,  c~, u does not  depend  on t, i .e .  

(X , ,NX, ,N)  = 0 if/~ + U V ~ 0 (mod  N ) (20) 

2Note that "N-truncated" is just  short for "truncated to N elements and then periodically 
continued." 
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Therefore 
N - I  

Cr, u = ~ exp(i2rr'rv/N)(XN-p,X~,N ) 
*'=0 

and because the fluctuations are real, we have 
N - 1  

Cr,N ~--- E exp(iZrrrv/N)S.,N 
t .=0  

N - 1  
1 S~,N = ~ 2 exp(-i2~rvr/N)c~, N 

r = 0  

where 

(21) 

(22) 

S~, u = ([X~,N[ 2) (23) 

is the power spectrum. 
Introducing (11) into (22) we obtain for a = 1 

S,,N (1) = 0.125/N (24) 

For other ~ < 1 we have calculated &,N(a') numerically. Figure 6 
shows some examples. Though these Sp,N(a') vary over about ten orders of 
magnitude, round-off errors have no appreciable effect in this range as will 
become clear in the discussion of critical spectra below. To avoid spectral 
leakage (4'5) N has always been chosen an integer multiple of the underlying 
periodp. Because of (19) Sp,N has the symmetry 

&,N = &-~,N (25) 

Therefore we only need to discuss S~, N in the interval 0 < v / N  < 1/2. 
All spectra contain a continuum part due to the chaotic motion within 

the boxes and lines representing the underlying cycle. A cycle of period p 
causes lines to appear at v / N = j / p ,  j =  1 , 2 , . . . , p - 1 .  The relative 
magnitudes of these lines reflect the intrinsic structure of the cycle. (Com- 
pare for example Fig. 6b with Fig. 6e, and Figs. 6f, 6g, and 6h with each 
other.) Going from a cycle to its subharmonic adds a fine structure to the 
otherwise practically unchanged overall structure of the cycle. Therefore 
the already existing lines in the spectrum do hardly change in magnitude 
while new lines corresponding to the doubled period of the subharmonic 
appear (Figs. 6a-6d). 

The small fluctuations on the continuum are due to the finite average 
used in the numerical computation. For primary cycles (Figs. 6e-6h) the 
continuum has practically no structure, whereas subharmonics have in 
most cases a strongly structured continuum (Figs. 6b-6d) with local ex- 
trema at the cycle frequenciesj/p. The amplitude of this modulation is the 
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Fig. 6. Spectra of several states of periodic chaos. 

e 

g 

h 

larger the slower the envelopes of the c.f.'s approach their asymptotic 
values. Thus the strength of the modulation is to a certain extent a 
consequence of the increased correlation time observed in the box c.f.'s of 
subharmonics. The distance between the local minima of this modulation is 
just twice the frequency interval between neighboring lines corresponding 
to a peak in the c.f. at ,r = p/2. The occurrence of this peak is obviously 
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due to the pairing of chaotic boxes characteristic for subharmonics. A 
closer inspection of the spectra of higher-order subharmonics reveals that 
this effect is also present, though less pronounced, for r = p / 4 ,  ~" = 
?/8 . . . . .  

Considering subharmonics of increasingly higher order one obtains 
spectra which converge in an asymptotically self-similar fashion to the 
spectrum at the critical point a~ P). In these critical spectra (Fig. 7) lines can 
be grouped into series. The intensity of lines in each series shows scaling 
behavior with the frequency. 

Considering several line series of the form {Spn,N [ Pn = 2-"Uo, uo, N 
fixed) we obtained 

S c~ Q , / N ) ~  (26) 
t "n ,N n__~ ~ 

with/7 ~ 6.31. (see Fig. 8). A calculation analogous to Ref. 13 relates/7 to 
the scaling parameter a of the critical limit sets A(a{ p)): 

/7 -~ 21d[2a2/(a - 1)] (27) 

i.e., /7 ~ 6.12. The difference between the experimental and the theoretical 
value is probably due to the approximative nature of the scaling assump- 
tion. Despite the variation of a on the limit set A(a{e)) the data points in 
Fig. 8 form almost perfect straight lines in the low-frequency range. Only 
when intensities become smaller than ~ 10-14 do deviations from linearity 
occur, which we attribute to round-off errors. Hence we conclude that our 
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Fig. 8. Asymptotic scaling of intensities within several line series; the different symbols refer 
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numerically computed spectra in Fig. 6 are not seriously affected by 
round-off errors. 

6. APPROXIMATION FOR SPECTRA OF PERIODIC CHAOS 

The spectra of periodic chaos can approximately be calculated by 
separating periodic and purely chaotic components. To this end we define a 
normalized sequence {E,(a")),~ 0 by 

x,(6) = Yc,(E) + l,( E)Y~( 6), �9 = 0, 1,2 . . . .  (28) 

where x 0 E I0 ~p) and (2~(a'))~ 0, ( /~(E))~ o are the sequences originating 
from the periodic continuation of the finite sets of instable fixed points and 
box lengths. These sequences contain the periodic components of 
{x~(a'3}T~=0, whereas (x'~(a-))~ 0 represents the chaotic part. Its subseries 
within each box have already been considered in (12). In terms of the 
decomposition (28) one obtains 

(xt)  = (2,)  + (l, Yt) (29) 

(x ,x ,+, )  = (2,~,+,)  + (~,l ,+,~,+,)  

+ (Yct+~lt,Yt) + (l, lt+~Yc,Y,+~) (30) 

Our approximation is based on two assumptions. The first one is the 
decorrelation assumption: 

The chaotic component is not correlated with the periodic compo- 
nents. 

The second assumption relates to the statistics of (Y~),~0. By the 
transformation (28) it is clear that ( x ' , )~  0 is normalized to the unit 

interval.  Considering for example the case p = 3(RL), see Fig. 2a, this 
means the off-diagonal boxes ] = 0, 1,2 are transformed to the unit square 
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1 

0 

Fig. 9. The mappings within off-diagonal boxes j =  0, 1, 2 of Fig. 3a after the normalization 
transformation (28). 

(Fig.9). While the map in j =  2 becomes the well-known parabola fl, the 
maps in ] =  0, 1 are transformed into maps close to the identity. For a 
general period-p chaos the normalized map in f = p  - 1 is fl and the other 
maps are more or less identities. The sequence (x~},~0 is generated by 
cyclic application of the normalized maps in j =  0, l, 2 , . . .  , pv -  1. Since 
those in j = 0, 1,2 . . . . .  p - 2 are almost linear and the one in j = p  - 1 is 
fl with c,(1) as given in (11), it is natural to expect the temporal behavior of 

O0 OO (x,},= 0 to be similar to the behavior of (x,(1)},= o slowed down by a 
factor p. This leads to the time dilation assumption: 

The c.f. of the normalized sequence {x"~} ~ o  of period-p chaos is given 
by 

0.125(1 - "r/p) for 0 < r -<< p (31) 
~(~(e)) = 0 forp  < r 

and the mean value is 

(Y(a(P))) =0 .5  (32) 

By means of these two assumptions we obtain from (29) and (30) 

c,(~(P)) ~- c7(a(e) ) + d~(a(e))g,(~7(p)) (33) 

where c* is the c.f. of ~, + (.~t)l, and 
p - I  

I 
d~(~7(e)) = "P t=0 ~ l'(a(P))lt+'(a(P)) (34) 

If N is an integer multiple of p, equation (33) is also valid for the respective 
N-truncated quantities. The Fourier transformation of (33) yields 

N - 1  
+ X (35) 

~=o 
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where S~ N, S* and S~ s are the spectra of the corresponding truncated , p , N ~  

* and E,, s and correlation functions C,,s, C,,s, 

N - - 1  
1 DmN(~(p)) = ~ E exp(-i2~v'r/N)d~,N(~(p)) (36) 

"r=O 

The results obtained with this approximation for the spectra in Fig. 6 
are shown in Fig. 10. The agreement is fairly good. The largest errors occur 
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for the spectra of subhan-nonics since our approximation (31) does not 
account for the slower decay of box c.f.'s in this case. 

When ~ approaches a critical value a {P), (35) becomes an exact 
expression for the spectrum because 

lin]cD~_,. N (~) = 0 (37) 

and all the information about the dynamics is filled in via ~* t,,~e)~ ~ v , N  \ t*c  2" 

Fujisaka and Yamada (46) used Mori's projector formalism to calculate 
c.f.'s of discrete chaotic processes. Hence their method requires as input 
information the invariant measure tt(P)(x), which is frequently known for 
p = 1 but rarely for p > 1, whereas we use x],/j, j = 0, 1,2 . . . .  , p - 1 and 
the c.f. 6, of the normalized map in box j = p -  1. So, by using their 
method first to find k~ and then applying the procedure described above the 
correlations and spectra of periodically chaotic states of dynamic laws 
different from (2) might be successfully approximated as well. 
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